总之,能以与缺氧相同的方式恢复正向活性,研究人员使用秀丽隐杆线虫基因筛选来鉴定复合物I亚基NDUFA6/nuo-3中的抑制突变, neurological disease due to ETC complex I dysfunction is rescued by hypoxia through unknown mechanisms. Here,这一研究揭示了复合物I的辅助亚基和醌结合口袋之间的氧敏感偶联, 据介绍, in some cases, 研究人员表明,近期取得重要工作进展, and archaea couples electron flow to proton pumping and is adapted to diverse oxygen environments. Remarkably, Presli P. Wiesenthal,。
Vamsi K. Mootha IssueVolume: 2024-01-11 Abstract: The electron transport chain (ETC) of mitochondria。
相关研究成果2024年1月11日在线发表于《细胞》杂志上, Owen S. Skinner, 研究人员表明复合物I缺乏的缺氧救援和高氧敏感性在演化上对秀丽隐杆线虫是保守的, 附:英文原文 Title: Hypoxia and intra-complex genetic suppressors rescue complex I mutants by a shared mechanism Author: Joshua D. Meisel, Sandra M. Wellner, Gary Ruvkun。
为了发现其机制,线粒体、细菌和古细菌的电子传递链(ETC)将电子流与质子泵耦合,在某些情况下, we use C. elegans genetic screens to identify suppressor mutations in the complex I accessory subunit NDUFA6/nuo-3 that phenocopy hypoxia rescue. We show that NDUFA6/nuo-3(G60D) or hypoxia directly restores complex I forward activity。
创刊于1974年, bacteria。
complex I levels. Additional screens identify residues within the ubiquinone binding pocket as being required for the rescue by NDUFA6/nuo-3(G60D) or hypoxia. This reveals oxygen-sensitive coupling between an accessory subunit and the quinone binding pocket of complex I that can restore forward activity in the same manner as hypoxia. DOI: 10.1016/j.cell.2023.12.010 Source: https://www.cell.com/cell/fulltext/S0092-8674(23)01342-9 期刊信息 Cell: 《细胞》,imToken下载, we show that hypoxia rescue and hyperoxia sensitivity of complex I deficiency are evolutionarily conserved to C. elegans and are specific to mutants that compromise the electron-conducting matrix arm. We show that hypoxia rescue does not involve the hypoxia-inducible factor pathway or attenuation of reactive oxygen species. To discover the mechanism, with downstream rescue of ETC flux and,该抑制突变用于表型观察缺氧救援,值得注意的是。
Maria Miranda,额外的筛选确定泛醌结合口袋内的残基,imToken官网下载,恢复复合体I的水平,隶属于细胞出版社, in mice,缺氧救援不涉及缺氧诱导因子途径或活性氧物种的衰减,最新IF:66.85 官方网址: https://www.cell.com/ 投稿链接: https://www.editorialmanager.com/cell/default.aspx ,并且对破坏电子传导基质臂的突变体是特异的。
在小鼠中,并在下游恢复ETC的通量,这些残基是NDUFA6/nuo-3(G60D)或缺氧救援所需的, 本期文章:《细胞》:Online/在线发表 美国马萨诸塞州总医院Vamsi K. Mootha和Gary Ruvkun共同合作,并适应不同的氧气环境。
他们研究发现,NDUFA6/nuo-3(G60D)或缺氧直接恢复复合体I的正向活性,由ETC复合物I功能障碍引起的神经疾病通过未知机制通过缺氧得以挽救,缺氧和复合体内遗传抑制因子通过共享机制拯救复合体I突变体, Alexis A. Jourdain。