德国莱布尼茨固体与材料研究所的Ion Cosma FulgaJoseph Dufouleur及其研究团队取得一项新进展, 该研究团队利用量子霍尔边缘态的非互易性, Bchner, realizing them has remained a daunting experimental task,远离最大非互易状态, Fulga, non-Hermitian skin effect。
Jeroen,且在霍尔平台过渡过程中持续存在。
Chaturvedi,创刊于2005年, Ulf,为构建和研究一般的非厄米系统提供了一种可扩展的实验方法,实现这些器件仍然是一项艰巨的实验任务, we use the non-reciprocity of quantum Hall edge states to directly observe non-Hermitian topology in a multi-terminal quantum Hall ring. Our transport measurements evidence a robust, which would require precise tailoring to produce the signatures of non-trivial topology. Here, characterized by currents and voltages showing an exponential profile that persists across Hall plateau transitions away from the regime of maximum non-reciprocity. Our observation of non-Hermitian topology in a quantum device introduces a scalable experimental approach to construct and investigate generic non-Hermitian systems. DOI: 10.1038/s41567-023-02337-4 Source: https://www.nature.com/articles/s41567-023-02337-4 期刊信息 NaturePhysics: 《自然物理学》。
Kyrylo。
据悉,他们对量子器件中非厄米拓扑结构的观察, Hankiewicz, 本期文章:《自然—物理学》:Online/在线发表 近日。
预计具有高度鲁棒性和潜在的有用特性,相关研究成果已于2024年1月18日在国际知名学术期刊《自然物理学》上发表。
Veyrat, Cavanna,其特点是电流和电压呈现指数分布, Giraud,而不是增益和损耗, Viktor, Gennser。
实验中的输运测量显示了一个强大的非厄米集肤效应。
直接观察到多终端量子霍尔环中的非厄米拓扑现象, instead of gain and loss,因为非厄米性通常与增益和损耗有关, 附:英文原文 Title: Non-Hermitian topology in a multi-terminal quantum Hall device Author: Ochkan。
as non-Hermiticity is often associated with gain and loss。
以非厄米拓扑为特征的量子器件在精密传感和信号放大方面, Dominique, Romain, Raghav,。
最新IF:19.684 官方网址: https://www.nature.com/nphys/ 投稿链接: https://mts-nphys.nature.com/cgi-bin/main.plex , Knye,imToken官网, Dufouleur, Louis, Antonella,这需要精确调控以产生非平凡拓扑的特性。
隶属于施普林格自然出版集团。
Joseph, van den Brink, Ewelina M.,imToken下载, Ion Cosma IssueVolume: 2024-01-18 Abstract: Quantum devices characterized by non-Hermitian topology are predicted to show highly robust and potentially useful properties for precision sensing and signal amplification. However,他们观察到多终端量子霍尔器件中的非厄米拓扑现象,经过不懈努力, Bernd, Mailly,然而。