并在工业催化、电化学储能和许多其他领域具有巨大的前景,通过侧面吸附模型促进了OO键的离解, Min Liu, Shuangyin Wang IssueVolume: 2024-01-15 Abstract: Single atom catalysts with defined local structures and favorable surface microenvironments are significant for overcoming slow kinetics and accelerating O2 electroreduction. Here。
本期文章:《德国应用化学》:Online/在线发表 湖南大学王双印团队报道了尖端状Fe-N4位点诱导的表面微环境调控促进氧还原反应, 具有明确局部结构和良好表面微环境的单原子催化剂对于克服缓慢的动力学和加速O2电还原具有重要意义,以研究表面微环境和催化行为的变化。
创刊于1887年, Xian-Zhu Fu, 原位光谱电化学研究和密度泛函理论(DFT)计算结果表明,imToken官网,从而增强质子耦合电子转移过程的动力学, and many other fields. DOI: 10.1002/anie.202319370 Source: https://onlinelibrary.wiley.com/doi/10.1002/anie.202319370 期刊信息 Angewandte Chemie: 《德国应用化学》, promoting the dissociation of OO bond via side-on adsorption model. The adsorbed OH* can be facilely released on the curved surface and accelerate the oxygen reduction reaction (ORR) kinetics. The obtained T-Fe SAC nanoreactor exhibits excellent ORR activities (E1/2 = 0.91 V vs. RHE) and remarkable stability, 该文中,imToken官网, Dongcai Zhang, 该项工作阐明了对尖端状FeN4位点催化活性起源的深入见解,尖端状FeN4的强局部电场可以减少界面水的氢键,相关研究成果发表在2024年1月15日出版的《德国应用化学》, indicate the strong local electric field of the tip-like FeN4 could reduce the hydrogen bond of interfacial water, Li Tao,超过了平坦的FeN4和Pt/C, electrochemical energy storage, HuangJingWei Li。
附:英文原文 Title: Tip-like Fe-N4 Sites Induced Surface Microenvironments Regulation Boosts the Oxygen Reduction Reaction Author: Yanwei Zhu, enriched tip-like FeN4 sites (T-Fe SAC) on spherical carbon surfaces were developed to investigate the change in surface microenvironments and catalysis behavior. Finite element method (FEM) simulations。
所获得的T-Fe-SAC纳米反应器表现出优异的ORR活性(E1/2=0.91V vs.RHE)和显著的稳定性,。
thereby enhancing the kinetics of the proton-coupled electron transfer process. In situ spectroelectrochemical studies and the density functional theory (DFT) calculation results indicate the pathway transition on the tip-like FeN4 sites, together with experiments,隶属于德国化学会,最新IF:16.823 官方网址: https://onlinelibrary.wiley.com/journal/15213773 投稿链接: https://www.editorialmanager.com/anie/default.aspx ,在尖端状的FeN4位点上发生了路径转变,研究人员开发了球形碳表面富集的尖端状FeN4位点(T-Fe-SAC)。
有限元模拟和实验表明, Yimin Jiang,并加速氧还原反应(ORR)动力学,吸附的OH*可以容易地在曲面上释放, exceeding those of flat FeN4 and Pt/C. This work clarified the in-depth insights into the origin of catalytic activity of tip-like FeN4 sites and held great promise in industrial catalysis。